A Fuzzy Data envelopment Analysis for Clustering Operating Units with Imprecise Data
نویسندگان
چکیده
Data envelopment analysis (DEA) is a non-parametric method for measuring the efficiency of peer operating units that employ multiple inputs to produce multiple outputs. Several DEA methods have been proposed for clustering operating units. However, to the best of our knowledge, the existing methods in the literature do not simultaneously consider the priority between the clusters (classes) and the priority between the operating units in each cluster. Moreover, while crisp input and output data are indispensable in traditional DEA, real-world production processes may involve imprecise or ambiguous input and output data. Fuzzy set theory has been widely used to formalize and represent the impreciseness and ambiguity inherent in human decision-making. In this paper, we propose a new fuzzy DEA method for clustering operating units in a fuzzy environment by considering the priority between the clusters and the priority between the operating units in each cluster simultaneously. A numerical example and a case study for the Jet Ski purchasing decision by the Florida Border Patrol are presented to illustrate the efficacy and the applicability of the proposed method.
منابع مشابه
Finding a Common Set of Weights by the Fuzzy Entropy Compared with Data Envelopment Analysis - A Case Study
A data envelopment analysis (DEA) method can be regarded as a useful management tool to evaluate decision making units (DMUs) using multiple inputs and outputs. In some cases, we face with imprecise inputs and outputs, such as fuzzy or interval data, so the efficiency of DMUs will not be exact. Most researchers have been interested in getting efficiency and ranking DMUs recently. Models of th...
متن کاملThe Efficiency of MSBM Model with Imprecise Data (Interval)
Data Envelopment Analysis (DEA) is a mathematical programming-based approach for evaluates the relative efficiency of a set of DMUs (Decision Making Units). The relative efficiency of a DMU is the result of comparing the inputs and outputs of the DMU and those of other DMUs in the PPS (Production Possibility Set). Also, in Data Envelopment Analysis various models have been developed in order to...
متن کاملNon-discretionary imprecise data in efficiency Measurement
This paper introduces discretionary imprecise data in Data Envelopment Analysis (DEA) and discusses the efficiency evaluation of Decision Making Units (DMUs) with non-discretionary imprecise data. Then, suggests a method for evaluation the efficiency of DMUs with non-discretionary imprecise data. When some inputs and outputs are imprecise and non-discretionary, the DEA model becomes non-linear ...
متن کاملThe Position of Multiobjective Programming Methods in Fuzzy Data Envelopment Analysis
Traditional Data Envelopment Analysis (DEA) models evaluate the efficiency of decision making units (DMUs) with common crisp input and output data. However, the data in real applications are often imprecise or ambiguous. This paper transforms fuzzy fractional DEA model constructed using fuzzy arithmetic, into the conventional crisp model. This transformation is performed considering the goal pr...
متن کاملDATA ENVELOPMENT ANALYSIS WITH FUZZY RANDOM INPUTS AND OUTPUTS: A CHANCE-CONSTRAINED PROGRAMMING APPROACH
In this paper, we deal with fuzzy random variables for inputs andoutputs in Data Envelopment Analysis (DEA). These variables are considered as fuzzyrandom flat LR numbers with known distribution. The problem is to find a method forconverting the imprecise chance-constrained DEA model into a crisp one. This can bedone by first, defuzzification of imprecise probability by constructing a suitablem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
دوره 21 شماره
صفحات -
تاریخ انتشار 2013